Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 737
Filtrar
1.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627469

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Assuntos
Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Macrófagos , Microglia , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Macrófagos/metabolismo , Microglia/metabolismo , Masculino , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Exossomos/metabolismo , Substância Negra/metabolismo
2.
Oncogene ; 43(18): 1341-1352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454138

RESUMO

Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.


Assuntos
Exossomos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , MicroRNAs , Invasividade Neoplásica , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Exossomos/metabolismo , Exossomos/genética , RNA Longo não Codificante/genética , Invasividade Neoplásica/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
3.
Scand J Med Sci Sports ; 34(1): e14497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724768

RESUMO

Delayed onset muscle soreness (DOMS) develops after performing unaccustomed eccentric exercises. Animal studies have shown that DOMS is mechanical hyperalgesia through nociceptor sensitization induced by nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) upregulated by cyclooxygenase-2 (COX-2). However, no previous study has investigated these in relation to DOMS in humans. This study compared the first and second bouts of one-leg eccentric cycling (ECC) for changes in NGF, GDNF, and COX-2 mRNA in the vastus lateralis (VL). Seven healthy adults (18-40 years) performed two bouts of ECC (10 sets of 50 contractions) with 80% maximal voluntary concentric peak torque separated by 2 weeks (ECC1, ECC2). Muscle soreness that was assessed by a visual analog scale and maximal voluntary isometric contraction (MVC) torque of the knee extensors were measured before, immediately after (MVC only), 24 and 48 h post-exercise. Muscle biopsy was taken from the VL before the first bout from nonexercised leg (control) and 24 h after each bout from the exercised leg, and analyzed for NGF, GDNF, and COX-2 mRNA. Peak DOMS was more than two times greater and MVC torque at 48 h post-exercise was approximately 20% smaller after ECC1 than ECC2 (p < 0.05), suggesting the repeated bout effect. NGF mRNA level was higher (p < 0.05) post-ECC1 (0.79 ± 0.68 arbitrary unit) than control (0.06 ± 0.07) and post-ECC2 (0.08 ± 0.10). GDNF and COX-2 mRNA did not show significant differences between control, post-ECC1, and post-ECC2. These results suggest that an increase in NGF is associated with the development of DOMS in humans.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Adulto , Humanos , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia , Mialgia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Perna (Membro) , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento Neural/metabolismo , Contração Isométrica/fisiologia , RNA Mensageiro/metabolismo , Contração Muscular/fisiologia
4.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987758

RESUMO

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Assuntos
Asma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Camundongos , Alérgenos , Colágeno , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ret/metabolismo
5.
Bioessays ; 46(3): e2300189, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38161234

RESUMO

Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8ß1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.


Assuntos
Estruturas Embrionárias , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Néfrons/embriologia , Ureter , Camundongos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Rim/anormalidades , Rim/metabolismo , Rim/patologia , Ureter/metabolismo , Morfogênese
6.
Cell Transplant ; 32: 9636897231213309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018498

RESUMO

This study was designed to provide evidence of the neuroprotective of human adipose-derived mesenchymal stem cells (hADSCs) in oxygen-induced retinopathy (OIR). In vivo, hADSCs were intravitreally injected into OIR mice. Various assessments, including HE (histological evaluation), TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, electroretinogram (ERG) analysis, and retinal flat-mount examination, were performed separately at postnatal days 15 (P15) and 17 (P17) to evaluate neurological damage and functional changes. Western blot analysis of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) was conducted at P17 to elucidate the neuroprotective mechanism. The P17 OIR group exhibited a significant increase in vascular endothelial cell nuclei and neovascularization that breached the ILM (inner limiting membrane) to the P17 control group. In addition, the retinal nonperfusion areas in the P17 OIR group and the number of apoptotic retinal cells in the P15 OIR group were significantly higher than in the corresponding hADSCs treatment group and control group. There was no significant thickness change in the inner nuclear layer (INL) but the outer nuclear layer (ONL) in the P17 OIR treatment group compared with the P17 OIR group. The cell density in the INL and ONL at P17 in the hADSCs treatment group was not significantly different from the OIR group. The amplitude of a-wave and b-wave in scotopic ERG analysis for the P17 OIR group was significantly lower than in the P17 hADSCs treatment group and the P17 control group. Furthermore, the latency of the a-wave and b-wave in the P17 OIR group was significantly longer than in the P17 hADSCs treatment group and the P17 control group. In addition, the expression levels of CNTF and BDNF in the P17 OIR group were statistically higher than those in the P17 control group, whereas the expression of GDNF was statistically lower in the P17 OIR group, compared with the P17 control group. The expression of CNTF and GDNF in the P17 hADSCs treatment group was statistically higher than in the P17 OIR group. However, the expression of BDNF in the P17 hADSCs treatment group was statistically lower than in the P17 OIR group. This study provides evidence for the neuroprotective effects of hADSCs in OIR.


Assuntos
Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Doenças Retinianas , Neovascularização Retiniana , Humanos , Animais , Camundongos , Oxigênio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Ciliar , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/terapia , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/metabolismo
7.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 125-129, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807323

RESUMO

The aim of this experiment was to analyze the ameliorating effect of neural stem cells (NSCs) on focal cerebral ischemia (FCI) through GDNF/PI3K/AKT axis, so as to provide evidence for future clinical application of NSCs. In this study, the 15 Sprague-Dawley (SD) male rats were modeled for middle cerebral artery occlusion (MCAO)-induced FCI and then grouped: NSCs group was treated with NSC transplantation, GDNF/NSCs group was transplanted with recombinant adenovirus pAdEasy-1-pAdTrackCMV-GDNF-transfedcted NSCs, and the blank group was treated with normal saline transplantation. Rats were tested by rotarod and corner turn tests at 1 week and 4 weeks after NSC transplantation, and the levels of tumor necrosis factor-α (TNF-α), interleukin-6/8 (IL-6/8), superoxide dismutase (SOD) and malondialdehyde (MDA) were quantified. Then all rats were killed and their brain tissues were HE stained for the determination of and GDNF/PI3K/AKT axis-associated protein expression. The results of the experiment showed that: at the 1st and 4th week after transplantation, the time on the rod, number of turnings and SOD were the lowest in the blank group among the three groups, while IL-6, IL-8, TNF-α and MDA were the highest (P<0.05). Increased time on the rod, number of turnings and SOD, as well as decreased IL-6, IL-8, TNF-α and MDA were observed in NSCs and GDNF/NSCs groups after transplantation, with better performance in GDNF/NSCs group (P<0.05). Based on HE staining of brain tissue, GDNF/NSCs group had the most significant improvement in tissue injury and the highest GDNF, PI3K, AKT and p-AKT protein expression among the three groups (P<0.05). In conclusions, NSC transplantation can ameliorate neurological function in MCAO-induced FCI rats through the GDNF/PI3K/AKT axis.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Ratos , Masculino , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interleucina-8/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Neurais/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Transplante de Células-Tronco/métodos , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Superóxido Dismutase/metabolismo
8.
Eur J Pharmacol ; 959: 176075, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802279

RESUMO

Astrocytes and the activation of inflammatory factors are associated with depression. Tetrahydrocurcumin (THC), the principal metabolite of natural curcumin, is renowned for its anti-inflammatory properties. In this research, we explored the impact of THC on the expression of inflammatory factors, neurotrophins, and transforming growth factor ß1 (TGF-ß1) in the prefrontal cortex after chronic restraint stress (CRS) in mice and in lipopolysaccharide (LPS)-induced TNC1 astrocytes. Our findings indicated that THC mitigated the anxiety and depression-like behaviours observed in CRS mice. It also influenced the expression of TGF-ß1, p-SMAD3/SMAD3, sirtuin 1 (SIRT1), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), inducible nitric oxide synthase (iNOS), and tumour necrosis factor α (TNF-α). Specifically, THC augmented the expressions of TGF-ß1, p-SMAD3/SMAD3, SIRT1, BDNF, and GDNF, whilst diminishing the expressions of iNOS and TNF-α in LPS-induced astrocytes. However, when pre-treated with SB431542, a TGF-ß1 receptor inhibitor, it nullified the aforementioned effects of THC on astrocytes. Our results propose that THC delivers its anti-depressive effects through the activation of TGF-ß1, enhancement of p-SMAD3/SMAD3 and SIRT1 expression, upregulation of BDNF and GDNF, and downregulation of iNOS and TNF-α. This research furnishes new perspectives on the anti-inflammatory mechanism that underpins the antidepressant-like impact of THC.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Sirtuína 1/metabolismo , Transdução de Sinais , Células Cultivadas , Anti-Inflamatórios/farmacologia , Proteína Smad3/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446291

RESUMO

Leukocyte common antigen-related protein tyrosine phosphatase (LAR) is a member of the protein tyrosine phosphatase family that serves as a key regulator of cellular survival. It is also involved in neurodevelopment and brain disorders. This study was designed to investigate the role of LAR in a cell-based model of Parkinson's disease (PD) in which U251 and SH-SY5Y cells were used as models of astrocytes and dopaminergic neurons, respectively. Cell viability, cell death, cell morphology, protein phosphorylation and expression, ATP levels, reactive oxygen species (ROS) generation, and mitochondrial membrane potential were analyzed in the wild-type (WT) and heterozygous LAR-knockout astrocytoma U251 cells to assess the cell state, signal transduction, and mitochondrial function. LAR downregulation showed a protective effect in rotenone-exposed U251 cells by increasing cell viability, reducing cell mortality, and restoring appropriate cellular morphology. LAR downregulation enhanced IGF-1R phosphorylation and downstream signal transduction as evidenced by increases in the Akt and GSK-3ß phosphorylation, as well as the upregulation of NRF2 and HO-1. The downregulation of LAR also augmented DJ-1 levels in these cells. The enhanced Akt and GSK-3ß phosphorylation contributed to a reduced Bax/Bcl2 ratio and suppressed apoptosis after rotenone exposure. Heterozygous LAR-knockout U251 cells exhibited higher mitochondrial function evidenced by increased mitochondrial membrane potential, ATP contents, and reduced ROS production compared to the WT cells following rotenone exposure. Further studies showed that the astrocytic protection mediated by the heterozygous knockout of LAR was associated with the activation of Akt. A specific Akt inhibitor, MK2206, reduced the cell viability, Akt and GSK3ß phosphorylation, and HO-1 and NRF2 expression in U251 cells exposed to rotenone. Astrocytes provide structural and metabolic support to maintain neuronal health. Astrocytic glial cell-derived neurotrophic factor (GDNF) production is vital for dopaminergic neuron survival. Heterozygous LAR-knockout U251 cells produced higher amounts of GDNF than the WT cells. The SH-SY5Y cells cocultured with heterozygous LAR-knockout U251 cells exhibited greater viability than that of cells cocultured with WT U251 cells in response to rotenone. Together, these findings demonstrate that the heterozygous knockout of LAR in astrocytes can play a key role in protecting both astrocytic cells and cocultured neurons in a rotenone-induced cell-based model of PD. This neuroprotective effect is attributable to the augmentation of IGF1R-Akt-GDNF signaling and the maintenance of astrocytic mitochondrial function.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Rotenona/toxicidade , Doença de Parkinson/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Astrócitos/metabolismo , Regulação para Baixo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurônios Dopaminérgicos/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose
10.
Reprod Biol ; 23(3): 100792, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523789

RESUMO

The teratomas formation has severely hindered the application of embryonic stem cells (ESCs) in clinical trials. Apurinic/apyrimidinic endonuclease 1 (APE1) is strongly involved in the development of tumors and differentiation process of stem cells. However, the role of APE1 in teratomas remains unknown. The expression of APE1 was examined in mouse ESCs (mESCs) by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. The role and mechanism of APE1 in the proliferation, pluripotency and differentiation of E14 cells were determined by cell counting, flow cytometry and western blot assays. Besides, the role of APE1 in teratomas was also probed in xenografted mice. The expression of APE1 was upregulated in mESCs with differentiation. Knockdown of APE1 reduced the cell numbers, induced the arrest of the G2/M phase, and decreased the expression of cell cycle-related proteins in E14 cells. Besides, loss- and gain-of-function assays revealed that APE1 enhanced the levels of proteins involved in pluripotency, reduced the protein expression of ectoderm markers, and increased the protein levels of endoderm markers in E14 cells. Mechanically, inhibition of APE1 downregulated the expression of GDNF and GFRα1 in E14 cells. GDNF reversed the role of APE1 in the proliferation, pluripotency and embryogenesis of E14 cells. Moreover, suppression of APE1 reduced the teratoma volume and the relative protein expression of endoderm markers, but increased the relative protein expression of ectoderm markers in xenografted mice. Collectively, knockdown of APE1 attenuated proliferation, pluripotency and embryogenesis of mESCs via GDNF/GFRα1 axis.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Teratoma , Animais , Camundongos , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Teratoma/metabolismo , Humanos
12.
Reprod Biol ; 23(3): 100781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285694

RESUMO

Zearalenone (ZEA) is a prevalent mycotoxin found in moldy diets and is associated with reproductive dysfunction. However, the molecular underpinning of ZEA in impairment of spermatogenesis remains largely unknown. To unveil the toxic mechanism of ZEA, we established a co-culture model using porcine Sertoli cells and porcine spermatogonial stem cells (pSSCs) to investigate the impact of ZEA on these cell types and their associated signaling pathways. Our findings showed that low concentration of ZEA inhibited cell apoptosis, while high concentration induced cell apoptosis. Furthermore, the expression levels of Wilms' tumor 1 (WT1), proliferating cell nuclear antigen (PCNA) and glial cell line-derived neurotrophic factor (GDNF) were significantly decreased in ZEA treatment group, while concurrently upregulating the transcriptional levels of the NOTCH signaling pathway target genes HES1 and HEY1. The addition of the NOTCH signaling pathway inhibitor DAPT (GSI-IX) alleviated the damage to porcine Sertoli cells caused by ZEA. Gastrodin (GAS) significantly increased the expression levels of WT1, PCNA and GDNF, and inhibited the transcription of HES1 and HEY1. GAS also efficiently restored the decreased expression levels of DDX4, PCNA and PGP9.5 in co-cultured pSSCs suggesting its potential in ameliorating the damage caused by ZEA to Sertoli cells and pSSCs. In conclusion, the present study demonstrates that ZEA disrupts pSSCs self-renewal by affecting the function of porcine Sertoli cell, and highlights the protective mechanism of GAS through the regulation of the NOTCH signaling pathway. These findings may offer a novel strategy for alleviating ZEA-induced male reproductive dysfunction in animal production.


Assuntos
Zearalenona , Masculino , Animais , Suínos , Zearalenona/toxicidade , Zearalenona/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células de Sertoli/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Transdução de Sinais
13.
Cell Signal ; 108: 110721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230200

RESUMO

How to efficiently regenerate jawbone defects caused by trauma, jaw osteomyelitis, tumors, or intrinsic genetic diseases is still challenging. Ectoderm-derived jawbone defect has been reported to be regenerated by selectively recruiting cells from its embryonic origin. Therefore, it is important to explore the strategy for promoting ectoderm-derived jaw bone marrow mesenchymal stem cells (JBMMSCs) on the repair of homoblastic jaw bone. Glial cell-derived neurotrophic factor (GDNF) is an important growth factor and is essential in the process of proliferation, migration and differentiation of nerve cells. However, whether GDNF promoting the function of JBMMSCs and the relative mechanism are not clear. Our results showed that activated astrocytes and GDNF were induced in the hippocampus after mandibular jaw defect. In addition, the expression of GDNF in the bone tissue around the injured area was also significantly increased after injury. Data from in vitro experiments demonstrated that GDNF could effectively promote the proliferation and osteogenic differentiation of JBMMSCs. Furthermore, when implanted in the defected jaw bone, JBMMSCs pretreated with GDNF exhibited enhanced repair effect compared with JBMMSCs without treatment. Mechanical studies found that GDNF induced the expression of Nr4a1 in JBMMSCs, activated PI3K/Akt signaling pathway and then enhanced the proliferation and osteogenic differentiation capacities of JBMMSCs. Our studies reveal that JBMMSCs are good candidates for repairing jawbone injury and pretreated with GDNF is an efficient strategy for enhancing bone regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea , Células Cultivadas
14.
Nat Commun ; 14(1): 2378, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185772

RESUMO

The outgrowth of epithelial bud followed by reiterated bifurcations during renal development is driven by the ligand-receptor interactions between the epithelium and the surrounding mesenchyme. Here, by exploring ligand-receptor interactions in E10.5 and E11.5 kidneys by single cell RNA-seq, we find that Isthmin1 (Ism1), a secreted protein, resembles Gdnf expression and modulates kidney branching morphogenesis. Mice deficient for Ism1 exhibit defective ureteric bud bifurcation and impaired metanephric mesenchyme condensation in E11.5 embryos, attributable to the compromised Gdnf/Ret signaling, ultimately leading to renal agenesis and hypoplasia/dysplasia. By HRP-induced proximity labelling, we further identify integrin α8ß1 as a receptor of Ism1 in E11.5 kidney and demonstrate that Ism1 promoted cell-cell adhesion through interacting with Integrin α8ß1, the receptor whose activation is responsible for Gdnf expression and mesenchyme condensation. Taken together, our work reveals Ism1 as a critical regulator of cell-cell interaction that modulates Gdnf/Ret signaling during early kidney development.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Camundongos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ligantes , Rim/metabolismo , Morfogênese , Mesoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
15.
Stem Cells Dev ; 32(13-14): 422-432, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37071193

RESUMO

Schwann cells (SCs) are essential for the regenerative processes of peripheral nerve injuries. However, their use in cell therapy is limited. In this context, several studies have demonstrated the ability of mesenchymal stem cells (MSCs) to transdifferentiate into Schwann-like cells (SLCs) using chemical protocols or co-culture with SCs. Here, we describe for the first time the in vitro transdifferentiation potential of MSCs derived from equine adipose tissue (AT) and equine bone marrow (BM) into SLCs using a practical method. In this study, the facial nerve of a horse was collected, cut into fragments, and incubated in cell culture medium for 48 h. This medium was used to transdifferentiate the MSCs into SLCs. Equine AT-MSCs and BM-MSCs were incubated with the induction medium for 5 days. After this period, the morphology, cell viability, metabolic activity, gene expression of glial markers glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), p75 and S100ß, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), and the protein expression of S100 and GFAP were evaluated in undifferentiated and differentiated cells. The MSCs from the two sources incubated with the induction medium exhibited similar morphology to the SCs and maintained cell viability and metabolic activity. There was a significant increase in the gene expression of BDNF, GDNF, GFAP, MBP, p75, and S100ß in equine AT-MSCs and GDNF, GFAP, MBP, p75, and S100ß in equine BM-MSCs post-differentiation. Immunofluorescence analysis revealed GFAP expression in undifferentiated and differentiated cells, with a significant increase in the integrated pixel density in differentiated cells and S100 was only expressed in differentiated cells from both sources. These findings indicate that equine AT-MSCs and BM-MSCs have great transdifferentiation potential into SLCs using this method, and they represent a promising strategy for cell-based therapy for peripheral nerve regeneration in horses.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Células-Tronco Mesenquimais , Cavalos , Animais , Transdiferenciação Celular , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Cultivadas , Células de Schwann , Diferenciação Celular/fisiologia
16.
Neuroreport ; 34(8): 419-425, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37096764

RESUMO

OBJECTIVES: The hypothalamus plays critical roles in maintaining brain homeostasis and increasing evidence has highlighted astrocytes orchestrating several of hypothalamic functions. However, it remains unclear how hypothalamic astrocytes participate in neurochemical mechanisms associated with aging process, as well as whether these cells can be a target for antiaging strategies. In this sense, the aim of this study is to evaluate the age-dependent effects of resveratrol, a well-characterized neuroprotective compound, in primary astrocyte cultures derived from the hypothalamus of newborn, adult, and aged rats. METHODS: Male Wistar rats (2, 90, 180, and 365 days old) were used in this study. Cultured astrocytes from different ages were treated with 10 and 100 µM resveratrol and cellular viability, metabolic activity, astrocyte morphology, release of glial cell line-derived neurotrophic factor (GDNF), transforming growth factor ß (TGF-ß), tumor necrosis factor α (TNF-α), interleukins (IL-1ß, IL-6, and IL-10), as well as the protein levels of Nrf2 and HO-1 were evaluated. RESULTS: In vitro astrocytes derived from neonatal, adults, and aged animals changed metabolic activity and the release of trophic factors (GDNF and TGF-ß), as well as the inflammatory mediators (TNF-α, IL-1ß, IL-6, and IL-10). Resveratrol prevented these alterations. In addition, resveratrol changed the immunocontent of Nrf2 and HO-1. The results indicated that the effects of resveratrol seem to have a dose- and age-associated glioprotective role. CONCLUSION: These findings demonstrate for the first time that resveratrol prevents the age-dependent underlying functional reprogramming of in vitro hypothalamic astrocytes, reinforcing its antiaging activity, and consequently, its glioprotective role.


Assuntos
Astrócitos , Interleucina-10 , Ratos , Animais , Masculino , Resveratrol/farmacologia , Astrócitos/metabolismo , Ratos Wistar , Interleucina-10/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6/metabolismo , Hipotálamo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas
17.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982650

RESUMO

Antiparkinsonian carotid body (CB) cell therapy has been proven to be effective in rodent and nonhuman primate models of Parkinson's disease (PD), exerting trophic protection and restoration of the dopaminergic nigrostriatal pathway. These neurotrophic actions are mediated through the release of high levels of glial-cell-line-derived neurotrophic factor (GDNF) by the CB transplant. Pilot clinical trials have also shown that CB autotransplantation can improve motor symptoms in PD patients, although its effectiveness is affected by the scarcity of the grafted tissue. Here, we analyzed the antiparkinsonian efficacy of in vitro-expanded CB dopaminergic glomus cells. Intrastriatal xenografts of rat CB neurospheres were shown to protect nigral neurons from degeneration in a chronic MPTP mouse PD model. In addition, grafts performed at the end of the neurotoxic treatment resulted in the repair of striatal dopaminergic terminals through axonal sprouting. Interestingly, both neuroprotective and reparative effects induced by in vitro-expanded CB cells were similar to those previously reported by the use of CB transplants. This action could be explained because stem-cell-derived CB neurospheres produce similar amounts of GDNF compared to native CB tissue. This study provides the first evidence that in vitro-expanded CB cells could be a clinical option for cell therapy in PD.


Assuntos
Corpo Carotídeo , Doença de Parkinson , Camundongos , Ratos , Humanos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Corpo Carotídeo/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transplante de Células , Substância Negra/metabolismo , Modelos Animais de Doenças , Corpo Estriado/metabolismo
18.
CNS Neurosci Ther ; 29(8): 2145-2161, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914965

RESUMO

OBJECTIVE: To explore the influence of protein arginine methyltransferase 8 (PRMT8) regulating glial cell-derived neurotrophic factor (GDNF) on neuron ferroptosis and macrophage polarization in spinal cord injury (SCI). METHODS: A rat model of SCI was established through an injury induced by an external force. Basso, Beattie, and Bresnahan score, hematoxylin and eosin staining, and immunofluorescence were used, respectively, to detect changes in rat locomotion, spinal cord histopathology, and NeuN expression in the spinal cord. Iron content in the spinal cord and levels of malondialdehyde and glutathione were measured using detection kits. Transmission electron microscopy was used to reveal the morphological characteristics of mitochondria. Western blotting was performed to detect PRMT8, GDNF, cystine/glutamate transporter XCT, glutathione peroxidase 4, 4-hydroxynonenal, heme oxygenase-1, inducible nitric oxide synthase (iNOS), CD16, and arginase 1 (Arg1). The expression levels of iNOS and Arg1 in the spinal cord were visualized by immunofluorescence. ELISA was performed to measure the expression levels of IL-6, IL-1ß, and TNF-α. Rat dorsal root ganglion (DRG) neurons and RMa-bm rat macrophages were treated with lipopolysaccharide under hypoxic conditions. The viability and iron content of the neurons were detected using Cell Counting Kit-8 and a specific probe, respectively. Flow cytometry and immunofluorescence were used to assess macrophage polarization. Chromatin immunoprecipitation was used to identify the binding of PRMT8 to the GDFN promoter. RESULTS: Neuronal ferroptosis and M1 macrophage polarization were promoted, and PRMT8 expression was downregulated in SCI. PRMT8 overexpression exerted therapeutic effects on injured DRG neurons and RMa-bm cells. Moreover, PRMT8 overexpression inhibited ferroptosis and M1 macrophage polarization in rats with SCI. PRMT8 promoted GDNF expression by catalyzing H3K4 methylation. Knockdown of GDNF counteracted the therapeutic effects of PRMT8 overexpression. CONCLUSION: Overexpression of PRMT8 may inhibit ferroptosis and M1 macrophage polarization by increasing GDNF expression, thereby alleviating SCI.


Assuntos
Ferroptose , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteína-Arginina N-Metiltransferases , Traumatismos da Medula Espinal , Animais , Ratos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Macrófagos/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Citocinas
19.
Cell Oncol (Dordr) ; 46(2): 315-330, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808605

RESUMO

PURPOSE: Liver metastasis, a lethal malignancy of gastric cancer (GC) patients, execrably impairs their prognosis. As yet, however, few studies have been designed to identify the driving molecules during its formation, except screening evidence pausing before their functions or mechanisms. Here, we aimed to survey a key driving event within the invasive margin of liver metastases. METHODS: A metastatic GC tissue microarray was used for exploring malignant events during liver-metastasis formation, followed by assessing the expression patterns of glial cell-derived neurotrophic factor (GDNF) and GDNF family receptor alpha 1 (GFRA1). Their oncogenic functions were determined by both loss- and gain-of-function studies in vitro and in vivo, and validated by rescue experiments. Multiple cell biological studies were performed to identify the underlying mechanisms. RESULTS: In the invasive margin, GFRA1 was identified as a pivotal molecule involved in cellular survival during liver metastasis formation, and we found that its oncogenic role depends on tumor associated macrophage (TAM)-derived GDNF. In addition, we found that the GDNF-GFRA1 axis protects tumor cells from apoptosis under metabolic stress via regulating lysosomal functions and autophagy flux, and participates in the regulation of cytosolic calcium ion signalling in a RET-independent and non-canonical way. CONCLUSION: From our data we conclude that TAMs, homing around metastatic nests, induce the autophagy flux of GC cells and promote the development of liver metastasis via GDNF-GFRA1 signalling. This is expected to improve the comprehension of metastatic pathogenesis and to provide a novel direction of research and translational strategies for the treatment of metastatic GC patients.


Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Macrófagos Associados a Tumor/metabolismo , Autofagia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo
20.
BMC Cancer ; 23(1): 138, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765275

RESUMO

BACKGROUND: Rearranged during transfection (RET) tyrosine kinase signaling has been previously implicated in endocrine resistant breast cancer, however the mechanism by which this signaling cascade promotes resistance is currently not well described. We recently reported that glial cell-derived neurotrophic factor (GDNF)-RET signaling appears to promote a positive feedback loop with the transcription factor early growth response 1 (EGR1). Here we investigate the mechanism behind this feedback loop and test the hypothesis that GDNF-RET signaling forms a regulatory loop with EGR1 to upregulate cyclin D1 (CCND1) transcription, leading to cell cycle progression and tamoxifen resistance. METHODS: To gain a better understanding of the GDNF-RET-EGR1 resistance mechanism, we studied the GDNF-EGR1 positive feedback loop and the role of GDNF and EGR1 in endocrine resistance by modulating their transcription levels using CRISPR-dCAS9 in tamoxifen sensitive (TamS) and tamoxifen resistant (TamR) MCF-7 cells. Additionally, we performed kinetic studies using recombinant GDNF (rGDNF) treatment of TamS cells. Finally, we performed cell proliferation assays using rGDNF, tamoxifen (TAM), and Palbociclib treatments in TamS cells. Statistical significance for qPCR and chromatin immunoprecipitation (ChIP)-qPCR experiments were determined using a student's paired t-test and statistical significance for the cell viability assay was a one-way ANOVA. RESULTS: GDNF-RET signaling formed a positive feedback loop with EGR1 and also downregulated estrogen receptor 1 (ESR1) transcription. Upregulation of GDNF and EGR1 promoted tamoxifen resistance in TamS cells and downregulation of GDNF promoted tamoxifen sensitivity in TamR cells. Additionally, we show that rGDNF treatment activated GDNF-RET signaling in TamS cells, leading to recruitment of phospho-ELK-1 to the EGR1 promoter, upregulation of EGR1 mRNA and protein, binding of EGR1 to the GDNF and CCND1 promoters, increased GDNF protein expression, and subsequent upregulation of CCND1 mRNA levels. We also show that inhibition of cyclin D1 with Palbociclib, in the presence of rGDNF, decreases cell proliferation and resensitizes cells to TAM. CONCLUSION: Outcomes from these studies support the hypotheses that GDNF-RET signaling forms a positive feedback loop with the transcription factor EGR1, and that GDNF-RET-EGR1 signaling promotes endocrine resistance via signaling to cyclin D1. Inhibition of components of this signaling pathway could lead to therapeutic insights into the treatment of endocrine resistant breast cancer.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Tamoxifeno , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Retroalimentação , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cinética , RNA Mensageiro , Transdução de Sinais , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Fatores de Transcrição , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA